Data Sheet
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
ADE7763
RESET 1
DVDD 2
AVDD 3
20
19
18
DIN
DOUT
SCLK
V1P 4
V1N 5
ADE7763
TOP VIEW
17 CS
16 CLKOUT
V2N 6 (Not to Scale) 15 CLKIN
V2P 7
AGND 8
REF IN/OUT 9
DGND 10
14
13
12
11
IRQ
SAG
ZX
CF
Figure 5. Pin Configuration (SSOP Package)
Table 4. Pin Function Descriptions
Pin No.
1
2
3
4, 5
6, 7
8
9
10
11
12
13
Mnemonic
RESET
DVDD
AVDD
V1P, V1N
V2N, V2P
AGND
REF IN/OUT
DGND
CF
ZX
SAG
Description
Reset Pin 1 . A logic low on this pin holds the ADCs and digital circuitry (including the serial interface) in a
reset condition.
Digital Power Supply. This pin provides the supply voltage for the digital circuitry. The supply voltage
should be maintained at 5 V ± 5% for specified operation. This pin should be decoupled to DGND with a
10 μF capacitor in parallel with a ceramic 100 nF capacitor.
Analog Power Supply. This pin provides the supply voltage for the analog circuitry. The supply should be
maintained at 5 V ± 5% for specified operation. Minimize power supply ripple and noise at this pin by using
proper decoupling. The typical performance graphs show the power supply rejection performance. This
pin should be decoupled to AGND with a 10 μF capacitor in parallel with a ceramic 100 nF capacitor.
Analog Inputs for Channel 1. This channel is intended for use with a di/dt current transducer, i.e., a
Rogowski coil or another current sensor such as a shunt or current transformer (CT). These inputs are fully
differential voltage inputs with maximum differential input signal levels of ±0.5 V, ±0.25 V, and ±0.125 V,
depending on the full-scale selection—see the Analog Inputs section. Channel 1 also has a PGA with gain
selections of 1, 2, 4, 8, or 16. The maximum signal level at these pins with respect to AGND is ±0.5 V. Both
inputs have internal ESD protection circuitry and can sustain an overvoltage of ±6 V without risk of
permanent damage.
Analog Inputs for Channel 2. This channel is intended for use with the voltage transducer. These inputs are
fully differential voltage inputs with a maximum differential signal level of ±0.5 V. Channel 2 also has a PGA
with gain selections of 1, 2, 4, 8, or 16. The maximum signal level at these pins with respect to AGND is
±0.5 V. Both inputs have internal ESD protection circuitry and can sustain an overvoltage of ±6 V without
risk of permanent damage.
Analog Ground Reference. This pin provides the ground reference for the analog circuitry, i.e., ADCs and
reference. This pin should be tied to the analog ground plane or to the quietest ground reference in the
system. Use this quiet ground reference for all analog circuitry, such as antialiasing filters and current and
voltage transducers. To minimize ground noise around the ADE7763, connect the quiet ground plane
to the digital ground plane at only one point. It is acceptable to place the entire device on the analog
ground plane.
Access to the On-Chip Voltage Reference. The on-chip reference has a nominal value of 2.4 V ± 8% and a
typical temperature coefficient of 30 ppm/°C. An external reference source can also be connected at this
pin. In either case, this pin should be decoupled to AGND with a 10 μF capacitor in parallel with a 100nF
ceramic capacitor.
Digital Ground Reference. This pin provides the ground reference for the digital circuitry, i.e., multiplier,
filters, and digital-to-frequency converter. Because the digital return currents in the ADE7763 are small, it is
acceptable to connect this pin to the analog ground plane of the system. However, high bus capacitance
on the DOUT pin could result in noisy digital current, which could affect performance.
Calibration Frequency Logic Output. The CF logic output gives active power information. This output is
intended to be used for operational and calibration purposes. The full-scale output frequency can be
adjusted by writing to the CFDEN and CFNUM registers—see the Energy-to-Frequency Conversion section.
Voltage Waveform (Channel 2) Zero-Crossing Output. This output toggles logic high and logic low at the
zero crossing of the differential signal on Channel 2—see the Zero-Crossing Detection section.
This open-drain logic output goes active low when either no zero crossings are detected or a low voltage
threshold (Channel 2) is crossed for a specified duration—see the Line Voltage Sag Detection section.
Rev. C | Page 9 of 56
相关PDF资料
EVAL-ADE7816EBZ BOARD EVALUATION FOR ADE7816
EVAL-ADE7878EBZ BOARD EVAL FOR ADE7878
EVAL-ADE7880EBZ BOARD EVAL FOR ADE7880
EVAL-ADE7953EBZ BOARD EVAL FOR ADE7953
EVAL-ADF4002EBZ1 BOARD EVAL FOR ADF4002
EVAL-ADG788EBZ BOARD EVALUATION FOR ADG788
EVAL-ADM1021AEB BOARD EVAL FOR ADM1021
EVAL-ADM1023EB BOARD EVAL FOR ADM1023
相关代理商/技术参数
EVAL-ADE7816EBZ 功能描述:BOARD EVALUATION FOR ADE7816 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源
EVAL-ADE7854EBZ 制造商:Analog Devices 功能描述:EVALUATION BOARDS - Boxed Product (Development Kits)
EVAL-ADE7858EBZ 制造商:AD 制造商全称:Analog Devices 功能描述:Poly Phase Multifunction Energy Metering IC with per Phase Active and Reactive Powers
EVAL-ADE7878EBZ 功能描述:BOARD EVAL FOR ADE7878 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PCI Express® (PCIe) 主要目的:接口,收发器,PCI Express 嵌入式:- 已用 IC / 零件:DS80PCI800 主要属性:- 次要属性:- 已供物品:板
EVAL-ADE7880EBZ 功能描述:BOARD EVAL FOR ADE7880 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:* 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:- 主要目的:电源管理,电池充电器 嵌入式:否 已用 IC / 零件:MAX8903A 主要属性:1 芯锂离子电池 次要属性:状态 LED 已供物品:板
EVAL-ADE7880EBZ 制造商:Analog Devices 功能描述:ADE7880, ENERGY METER, 3 PH, SPI, I2C, E
EVAL-ADE7913EBZ 制造商:AD 制造商全称:Analog Devices 功能描述:3-Channel, Isolated, Sigma-Delta ADC with SPI
EVAL-ADE7953EBZ 功能描述:BOARD EVAL FOR ADE7953 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源